

Analyse de défaillance des transistors MOSFET Du boîtier, jusqu'à l'atome

Olivier Latry

06 avril 2021

Composants de puissance en boîtier

Principaux travaux sur les composants de puissance grand gap.

Parc instrumental du laboratoire permettant :

- 2 la caractérisation fine,
- 2 la préparation d'échantillons,
- I'analyse non destructive,
- l'analyse destructive du MEB à la sonde atomique

✤ The main purpose is to explain the correlation between electrical characterisation and physical analysis with the instrumental platform of the laboratory.

The main purpose is to explain the correlation between electrical characterisation and physical analysis with the instrumental platform of the laboratory.

Projet EMOCAVI

EMOCAVI (2016-2020) (collaboration GPM+IRSEEM)

European research program for SiC MOSFET transistor reliability at high temperature. Evolution des MOdèles des Composants de puissance grand gAp au cours du Vleillissement

✓ Normally on -> Normally off

Tsc=4ms, Vos=35V, T=1s, 80°C

V_{DS}=V_{DC1}

- Pulse répétitif -> Commutation répétitive
- T_{sc} -> I_{Ds} -> V_{Ds} * I_{Ds}*Ton=E (énergie dissipée)-> L'élévation de température
- Une dégradation -> Suivi des paramètres électriques

> Analyse microstructurales en MEB

Vue de la découpe par PFIB pour le composant à l'état dégradé (PAC#2)

- Le défaut est clairement montré dans la zone de drain, ce qui se traduit par des fissures dans le métal d'Al.
- La conséquence du champ électrique drain-source et l'élévation de température.

Aussi observé pour le PAC#4 (28000 pulses, 4ms)

.

• Projet PHC TOUBKAL

PHC TOUBKAL (2017-2019)

34k€ Université Abdelmalek ESSAADI Tétouan ENSA Tanger Université Abdelmalek. ESSAADI Tétouan ENSA Tanger

Fiabilité des composants électroniques de puissance: Impact sur les performances des systèmes de conversion d'énergie <u>Mesure des caractéristiques C-V:</u>

• Contrainte d'intégration Implémentation de la structure :

Structure du VD-MOSFET simulé

Modèle du transistor GaN vieilli dans un convertisseur DC Boost

Capacités parasites du MOSFET-SiC

W. Jouha, "Etude et modélisation des dégradations des composants de puissance grand gap soumis à des contraintes thermiques et électriques," 2019.

Projet FUI 16 FIRST-MFP

Grille

Drain

Label MOVEO, ASTEC, NAE, (2014-2017)

Improving the reliability and resistance of high-power mechatronic systems Failure analysis in spectral photoemission microscopie.

=> Identification de 3 différentes types de spots

Source

N. Moultif, "Analyse de défaillance dans les transistors de puissance grand gap par électroluminescence spectrale," 2017.

Drain

Démarche pour les composants de puissance

Analyse de défaillance des composants MOSFET

Generation	Ref.	I _{ds} (max)	V _{ds} (max)	Tc(max)	
Gen2L	C2M0280120D	10 A	1200 V	150°C	
Gen2H	C2M0160120D	19A	1200V	150°C	
Gen3L	C3M0280090D	11.5 A	900V	150°C	
Gen3H	C3M0120090D	23 A	900V	150°C	

P. Dherbecourt *et al.*, "New Technologies of Power Transistors for Efficiency Increase of Power Converters: The Reliability Consideration," 2019, doi: 10.4108/eai.24-4-2019.2284211.

Préparation : Ablation laser

Ablation laser sur boitier TO247 Sur 3 échantillons MOSFET Forte et moyenne puissance

Utilisation d'un laser de 20W pulsé Laser à fibre Ytterbium de 1mJ de 1064nm

Réalisation d'une géométrie et plusieurs passages suivant des motifs choisis

Préparation : Attaque chimique

Sous hôte aspirante, avec acide sulfurique ou nitrique fumant sous une température de 80°C à 100°C contrôlée.

Dissoudre la résine sans toucher aux métaux.

Fils aluminium, couche de passivation

Préparation : Observation optique

Agrandissement (a) 5x, (b) 10x, (c) 20x

Observation au microscope électronique à balayage

Observation générale

	Taille de la puce $(\mu m \times \mu m)$	Nombre de ligne	Largeur de la ligne (μm)	Largeur du canal (nm)	Épaisseur d'oxyde (nm)
G2L	1447 x 2105	186	9,3	550	50
G3H	1763 x 2236	316	5,9	320	30
G3L	$1342 \ge 1605$	197	6,1	290	30

Technique de localisation de défauts

Technique	Type des défauts localisés	Limitations
стуа	Interconnesions ouvertes Diffaut d'oxyde	La présence de couches épaisses de passivation nécessite une forte énergie du faisceau d'électrons pour atteindre le conducteur ce qui augmente le risque d'imadiation
EBIC	 Dégradation de jonction Défauts actifs (Précipités, joints de grains) Dislocation 	 Coûteuse carnécessite d'être sousvide Problème de charge Analyse des zonesprofondes Dégradation de l'osyde de grille par effet d'irradiation
EBAC	Sites défaillants à hauterésistance Ciecuits ouverts d'intercommison Court-ciecuit Défauts d'oxyde et fuite de grille	 Enige deux sondes pour les défauts à forte résistance Dégradation par effet d'insuliation pour les fortes énergies du faisceau d'électron
OBIC	 ESD/EOS Courants de fluite Court-circuit Dégradation de jonction Sensibilité au latch-up Basculement logique 	 Faible résolution due à la largeur de faisceau Préparation de l'échantillon: L'analyse OBIC en face arrière nécessite un polissage du substrat pour réduire la diffusion du faisceau lumineux infrarouge scanné.
OBIRCH	Court-circuit	Sensibilité de détection des faibles tensions et courants
LIVA	Circuit ouvert Dégradation de jonction Basculement logique de transistor	 LIVA exige que les connexions électriques soient maintenues sur le composant, donc si le processur de préparation de l'échantillon et d'ouverture en face amère endommage l'interconnexion, LIVA ne peut pas être appliquée
TIVA	Court-Circuit Défaut des pistes métalliques et les vias	 Sensibilité à l'émissivité et Niveau de bruit Elle se base sur une polarisation à courant constant, cependant le bon fonctionnement des composants exige en général une source de tension constante.
SEI	Circuit ouvert	Fort contraste qui peut masquer les défauts
PEM	 Difailance de la jonction PN Fuite d'oxyde Ionisation d'impact Filament de contact Latch-up 	 Défaut qui n'émet pas de la lumère Présence des couches de métallisation et jonctions enterrées Préparation d'échantillon Sensibilité du détecteur

Point d'ordre -1

Modification d'un microscope : SPEM

Préparation face arrière

Localisation d'un défaut ponctuel sur un MOSFET stressé par ESD (HBM 15kV)

Microscope à émission de photons

OBIRCH

Face arrière

Section droite

Mise en évidence du phosphore dans les caissons N+

Rapport des échelles

[1] N. Moultif, "Analyse de défaillance dans les transistors de puissance grand gap par électroluminescence spectrale," 2017.

[2] N. Moultif, E. Joubert, and O. Latry, "Reliability Study of Mechatronic Power Components Using Spectral Photon Emission Microscopy," Adv *Electromagn*, vol. 5, no. 3, pp. 20–24, 2016, doi: 10.7716/aem.v5i3.380.

[3] N. Moultif, E. Joubert, M. Masmoudi, and O. Latry, "Characterization of ESD Stress Effects on SiC MOSFETs Using Photon Emission Spectral Signatures," 2017 Annu Reliab Maintainab Symposium Rams, pp. 1–7, 2017, doi: 10.1109/ram.2017.7889732.

[4] N. Moultif, A. Divay, E. Joubert, and O. Latry, "Reliability of High-Power Mechatronic Systems 2," pp. 241–271, 2017, doi: 10.1016/b978-1-78548-261-8.50008-5.

[5] N. Moultif, M. Masmoudi, E. Joubert, and O. Latry, "Reliability of High-Power Mechatronic Systems 2," pp. 155–197, 2017, doi: 10.1016/b978-1-78548-261-8.50005-x.

[6] N. Moultif, E. Joubert, M. Masmoudi, and O. Latry, "Characterization of HTRB stress effects on SiC MOSFETs using photon emission spectral signatures," *Microelectron Reliab*, vol. 76, pp. 243–248, 2017, doi: 10.1016/j.microrel.2017.07.013.

[7] N. Moultif, E. Joubert, and O. Latry, "SiC MOSFET robustness to ESD study: Correlation between electrical and spectral photo-emission

characterizations," 2018 19th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 260–264, 2018, doi: 10.1109/melcon.2018.8379104.

[8] W. Jouha, "Etude et modélisation des dégradations des composants de puissance grand gap soumis à des contraintes thermiques et électriques," 2019.
[9] W. Jouha, P. Dherbecourt, E. Joubert, and A. E. Oualkadi, "Static Behavior Analysis of Silicon Carbide Power MOSFET for Temperature Variations," 2016 Int Conf Electr Information Technologies Iceit, pp. 276–280, 2016, doi: 10.1109/eitech.2016.7519605.

[10] W. Jouha, A. E. Oualkadi, P. Dherbécourt, E. Joubert, and M. Masmoudi, "A New Extraction Method of SiC Power MOSFET Threshold Voltage Using a Physical Approach," 2017 Int Conf Electr Information Technologies Iceit, pp. 1–6, 2017, doi: 10.1109/eitech.2017.8255289.

[11] W. Jouha, A. E. Oualkadi, P. Dherbcourt, E. Joubert, and M. Masmoudi, "Silicon Carbide Power MOSFET Model: An Accurate Parameter Extraction Method Based on the Levenberg Marguardt Algorithm," *leee T Power Electr*, vol. 33, no. 11, pp. 9130–9133, 2018, doi: 10.1109/tpel.2018.2822939.

[12] P. Dherbecourt *et al.*, "New Technologies of Power Transistors for Efficiency Increase of Power Converters: The Reliability Consideration," 2019, doi: 10.4108/eai.24-4-2019.2284211.

[13] W. Jouha, A. E. Oualkadi, P. Dherbécourt, M. Masmoudi, and E. Joubert, "In-depth analysis of the static behaviour of a SiC MOSFET and of its associated parameters using both compact modelling and physical simulation," *let Circuits Devices Syst*, vol. 14, no. 2, pp. 222–228, 2020, doi: 10.1049/iet-cds.2018.5509.

[14] W. Jouha, M. Masmoudi, A. E. Oualkadi, E. Joubert, and P. Dherbécourt, "Physical Study of SiC Power MOSFETs Towards HTRB Stress Based on C-V Characteristics," *Ieee T Device Mat Re*, vol. 20, no. 3, pp. 506–511, 2020, doi: 10.1109/tdmr.2020.2999029.

[15] S. Mbarek, "Fiabilité et analyse physique des défaillances des composants électroniques sous contraintes électro-thermiques pour des applications en mécatronique.," 2017.

[16] S. Mbarek, F. Fouquet, P. Dherbecourt, M. Masmoudi, and O. Latry, "Gate oxide degradation of SiC MOSFET under short-circuit aging tests," *Microelectron Reliab*, vol. 64, pp. 415–418, 2016, doi: 10.1016/j.microrel.2016.07.132.

[17] S. Mbarek, P. Dherbécourt, O. Latry, and F. Fouquet, "Short-circuit robustness test and in depth microstructural analysis study of SiC MOSFET," *Microelectron Reliab*, vol. 76, pp. 527–531, 2017, doi: 10.1016/j.microrel.2017.07.002.

[18]]S. Duguay, A. Echeverri, C. Castro, and O. Latry, "Evidence of Mg segregation to threading dislocation in normally-off GaN-HEMT," IEEE Transactions on Nanotechnology, pp. 1–1, 2019, doi: 10.1109/tnano.2019.2942400.

Principales références GPM liées à l'analyse des transistors MOSFET SiC

