

Mécanismes de défaillance ESD

David Trémouilles

2 mars 2021

LES RENDEZ-VOUS FIABILITE DU CFF

LAAS-CNRS / Informations pratiques

Le Laboratoire d'Analyse et d'Architecture des Systèmes

LAAS

- Localisé à Toulouse, France
- Associé à l'Université de Toulouse
- Personnel
 - 700 dont 300 chercheurs et ingénieurs
 - 60 thèses soutenues chaque année

Domaines applicatifs

Santé & Environnement	Industrie du futur	Energie	Espace	Transport & Mobilité
Interfacer santé, agro- alimentaire et environnement via les technologies de l'information et de la communication	Préparer l'industrie à l'ère du numérique	Accélérer la transition énergétique au travers des réseaux intelligents et des systèmes embarqués	Embarquer des concepts et savoir-faire innovants au sein de missions spatiales	Sécuriser les prochaines générations de véhicules autonomes et connectés

Quatre champs disciplinaires

26 équipes, 8 départements, 10 services

Des plateformes partagés et ouvertes

Clean Room	Electrical Characterization	Microwave Characterization	Optical lab
 €35 million equipment, 2500 m², 36 people in the technical staff, 200 regular users 	 On wafer measurements: I-V, Z(f), C(V), mapping ESD measurements: TLP, VFTLP, HBM 	 On wafer characterizations : S parameters, spectrum measurements Noise measurements 	 Material characterization Characterization of passive and active photonic devices
Biology & chemistry lab	Multifab Fablab	Robotics	Energy Management
 Cell cultures facilities Fluorescent microscopy DNA, RNA and protein 	Open platform for multiscale and multimaterial 3D printing	 More than 15 robots 3 humanoids, 5 in- door robots, 3 out- doors robots, drones 	 Instrumented experimental building (1700 m²): 100 kWp photovoltaics
quantification			5

Département Gestion de l'Énergie

Objectif: Relever les défis de l'efficacité énergétique et contribuer à un développement durable

- Gestion de l'énergie: du nanomatériau au système
- Robustesse et fiabilité: ESD/CEM, modélisation électrothermique

Activités scientifiques:

Modélisation prédictive, simulation Développements technologiques Caractérisations physiques et électriques

Applications:

Énergie renouvelable, Réseaux électriques, Transports, Spatial, Aéronautique...

Foudre / ESD <u>Des densités d'é</u>nergie équivalentes

1 kJ/g

Les décharges électrostatiques sont omniprésentes

Origines:

- Triboélectricité
- Induction

Seuil de sensibilité : 2kV à 4kV 15kV : décharge mémorable!

	Tension électrostatique (kV)	
Activités pouvant générer des charges	10% H.R	55% H.R
Marcher sur une moquette synthétique	35	7,5
Marcher sur un sol en vynil	12	3
Saisir un CI d'un tube en plastique	2	0,4
Enlever une carte PCB d'un sac à bulle	26	7

Dans la vie courante...

CFF

ESD Protected Area (EPA)

(1) Grounding Person Wrist Strap to Ground (or flooring/footwear)

3 ESD Protective Packaging

Standard ANSI/ESD S20.20

Mécanismes de défaillance ESD

Mécanismes induits par le courant
 Fusion filamentaire dans le silicium
 Sublimation (Grands-Gap)
 Fusion de films minces
 Migration de métal dans le silicium (spiking)

Mécanismes induits par la tension

Injection de charges
 Claquage de diélectriques

Spécificités composants de puissance ?

- > Les composants de puissance sont généralement de « gros » composants.
- > Leur propre capacité peut permettre de garantir un niveau de robustesse HBM satisfaisant.
- C'est l'inverse pour le CDM !
 Mais la robustesse CDM dépend aussi du packaging.

$$V_{\text{final}} = C_{\text{HBM}} / (C_{\text{DEV}} + C_{\text{HBM}}) \times V_{\text{HBM}}$$

> Pour la grille $C_{\text{DEV}} \sim C_{\text{ISS}}$, $V_{\text{final}}^{\text{max}} \sim V_{\text{g}}^{\text{max}}$
> Pour le drain $C_{\text{DEV}} \sim C_{\text{OSS}}$, $V_{\text{final}}^{\text{max}} \sim V_{\text{DS}}^{\text{max}}$

Plutôt de mauvaises nouvelles du coté des grands-gap

- > Application note Wolfspeed (Cree): "The smaller chip size of SiC MOSFETs means lower electrostatic discharge (ESD) withstand capability relative to silicon devices. Therefore it's advised to handle SiC devices with adequate ESD protection measures."
- > EPC : "Caution: GaN transistors are sensitive to static. GaN transistors have very low capacitances and a low maximum allowed gate voltage. Wrist straps, grounding mats, and other ESD precautions must be followed to avoid exceeding maximum device ratings."

Grands Gaps - Des qualités exceptionnelles pour l'électronique de puissance

Fonctionnement pour la haute fréquence

Mais qui induisent des mécanismes (de défaillances) qui peuvent être différents de ceux dont on est habitué dans le silicium.

Étude robustesse ESD de composants SiC

Thèse Tanguy Phulpin (2016) - LIA Widelab

- Robustesse intrinsèque faible •
- Deux types de défaut, fonction de la géométrie et de la technologie du • composant

1^{er} type de défaut : claquage du diélectrique

Photographie au MEB après une coupe FIB sur un MR défaillant

• Via

- Metal 1
- Metal 2
- contact

Métal de drain au fort potentiel

Body au plus faible potentiel

Le SiO2 ne peut soutenir le champ appliqué

Dégradation de l'oxyde suite à un trop fort champ électrique

 Champ de rupture du SiO₂ à RT autour de 5 MV/cm_, d=0,5 μm La tension soutenue par le diélectrique autour de 250V

2nd type de défaut : sublimation du SiC

2nd type de défaut : sublimation du SiC

Conclusions

- Impossible de ce débarrasser complètement des phénomènes de décharges électrostatiques
- La robustesse ESD est requise au niveau composants pour leur assemblage et au niveau des systèmes pour leur utilisation
- Les composants de puissance sont certes intrinsèquement plus robustes que des technologies numériques mais restent sensibles aux ESD (État bloqué, commande de grille...)
- L'introduction des grands-gap tend à réduire la robustesse ESD
- Mécanismes des dégradations sensiblement différents de ceux du silicium
 - Report des contraintes sur les couches supérieures
 - Hautes températures et forts champs électriques
 - \checkmark Pas de fusion, mais sublimation
- Encore mal évalué : impact ESD sur Ron dynamique, instabilité du Vth...
- Besoin d'outils de caractérisations adaptés : Plateforme PROD