

EPowerDrive Project

Bernardo Cougo Senior Expert on Power Electronics

Electrical Applications in Aircrafts

More Electrical Aircraft

Power Density (kW/Kg)

OBJECTIVES

 Propose technologies, models and tools to increase power density and efficiency of the the whole electromechanical chain using WBG semi-conductors (Silicium Carbide SiC and Gallium Nitride GaN)

8,4 M€

48 months (oct.17 - oct 21)

AEROCONSEIL, AIRBUS, APSI 3D, ELVIA PCB, LIEBHERR, NIDEC/LEROY SOMER, SAFRAN, (TFE ELECTRONICS), ZODIAC, LAPLACE, SATIE, G2ELAB

Key Results

- WP1 (Optimisation) → Tools for Multi-Disciplinary Optimisation
- WP2 (EMC) \rightarrow HF models for optimized filter design
- WP3 (Power Electronics) → Technologies for highpower density, high efficiency inverter
- WP4 (Electric Motors) → Models for better understanding of iron losses, potential of additive manufacturing

MESEOD

Contribute with models, characterization results and technologies in order to help optimizing the Power Drive System

Specific Objective:

SAINT EXUPERY

Design, Built and Test a Full Compliant 70kVA/56kW/540V THREE-PHASE INVERTER

Integrated design by optimization of electrical systems & IRT Positioning

Multidisciplinary design optimization

of electrical system

Research Topics on EPowerDrive

Control card & algorithm, optimized PWM, active gate driver

Cooling system optimization

Component, power module & magnetics loss characterization

Innovative SiC power module

High efficiency & integrated SiC & GaN Power Converter

EMI, overvoltage & partial discharge impact evaluation 5

Reliability of SiC Modules

Power Module

Reliability of a power module

Internal structure of a generic power module [1]

Number of cycles to failure versus temperature variation of MOSFET dies inside a power module for automotive applications [2]

- Small SiC dies = thermal impedance smaller than that of Si.
- Thermal cycles at fondamental frequency can be significant.
- Fast SiC switching induce higher overvoltage at drain-source and gate-source terminals, which may reduce component lifetime.

[1] B. Mouawad, "Assemblages innovants en électronique de puissance utilisant la technique de « spark plasma sintering »," Ph.D. dissertation, Institut National des Sciences Appliquées de Lyon, 2013
[2] A. Testa, S. De Caro, S. Panarello, S. Patane, "Stress Analysis and Lifetime Estimation on Power MOSFETs for Automotive ABS Systems" IEEE PESC 2008_

Impact of SiC on PD

Partial Discharge and Overvoltage

• Phase to phase overvoltage in electromechanical chain : inverter + harness + motor

• Example of measured overvoltage on AC motor + 2m harness fed by IGBT inverter (IRT platform)

→ Propagation and reflection phenomena along the harness, even for small lengths, cause voltage overshoots across the motor phases

Impact of SiC on PD

Experimental Investigation

Overvoltage caused by SiC inverter fed a short CF-AWG18 harness having...

Length of 18.7 m

Length of 2.3 m

- Very high overvoltage can appear on cables end if its length has a characteristic frequency close to the ringing frequency at the output of the converter
- Simulation with our developed frequency models is fast (Calculation time < 200ms) and matches very well experimentation (Accuracy < 6%)

EPOWERDRIVE – Reliability

Improving reliability of Power Drive System

Laplace

- Reduce Overvoltage
- Reduce Switching Speed
- Reduce Maximum Temperature
 - **Reduce Thermal Cycles**

Active Gate Driver (AGD)

Implementation of AGD

Experimental Results

Developed AGD reduce switching speed, overvoltage with small increase on switching losses

EPOWERDRIVE – Reliability

- Reduce Switching Speed
- Reduce Maximum Temperature
- Reduce Thermal Cycles

Optimal PWM method to reduce losses and thermal cycles

Packaging and Integration

GaN inside PCB

Innovative SiC power module 11

PWM Methods (Common mode offset)

Floating Neutral Point Configuration

Continuous PWM Methods

◎ IRT AESE – All right reserved Confidential and proprietary document.

PWM Methods

Influence on Losses (2-Level Converter)

Total losses decrease 28% at 50kHz using a more "adequate" PWM method

PWM Methods (Experimental Results)

Three-phase SiC Inverter (15kW/540V)

Three-Phase Prototype

AINT EXUPERY

- *Pout* \approx 14kVA, efficiency can attain **99%** with the DPWM1, at *Fsw* = 50kHz.
- Maximum of 5% difference between measured losses and estimated losses using characterization method, for any PWM method.

Thermal Cycles

Thermal Impedance

Thermal impedance characteristics

6-pack 1200V/50A SiC MOSFET

Thermal impedance model

Résistance thermique	
R0	4,18x10 ⁻³
R1	7,49x10 ⁻³
R2	7,33x10 ⁻²
R3	1,41x10 ⁻²
R4	5,83x10 ⁻²
R5	4,24x10 ⁻²
R6	2,80x10 ⁻²
R7	2,30x10 ⁻²
R8	2,40x10 ⁻²
R9	2,42x10 ⁻²
R10	2,33x10 ⁻²
R11	2,21x10 ⁻²
R12	1,86x10 ⁻²
R13	6,80x10 ⁻³

Canacitá tharmiqua		
(I/K)		
	2.07.10-3	
C0	3,07x10°	
C1	7.02-10-3	
CI	7,95X10	
C2	1.89x10 ⁻²	
	1,05410	
C3	9.41x10 ⁻³	
	- ,	
C4	4,42x10 ⁻²	
	-	
C5	5,33x10 ⁻²	
C6	8,55x10 ⁻²	
~-	1	
C 7	1,87x10 ⁻¹	
	2 64 10-1	
08	3,64X10 °	
CQ	6 51×10 ⁻¹	
0	0,51X10	
C10	1.22	
010	1,22	
C11	2.47	
	-,	
C12	5,01	
	-	
C13	25,1	

 T_{amb}

╈

Thermal Cycles

Instantaneous temperature difference between junction and case

© IRT AESE -

All right reserved Confidential and proprietary document.

Thermal Cycles

Thermal cycle amplitude of junction temperature

Topology and Components

AINT EXUPERY,

Architecture and Different Versions

2 DBCs to decrease surface and to reduce capacitor temperatures

Design of 2 Versions

Version "Vias" made with performing DBC (Si3N4) to reduce parasitic inductance et resistance ²¹

CULPA: SiC Module

Designed SiC Power Module

Parallel Multilevel Inverter (540V/15kVA)

Circuit of Multilevel Converter Using Developed SiC Power Module

- Characterization of SiC module using the Modified Opposition Method
- Evaluation of losses, EMI and overvoltages in a double threephase (parallel multilevel) converter using coupled inductors

Experimental Results

Comparison between different components and modules

• Designed power module presents lower losses than commercial power module and discrete component with the same die

Experimental Results

Comparison between different modules

• Designed power module presents higher speed and low overshoot when compared to discrete component using the same die

GaN Inside PCB

Embedded DISSIPATEUR TIM PCB GaN GaN

Goals:

- Increase power density
- Improve thermal and electrical performance

Packaged Component

GS66516T 60A, 25mΩ Top cooling

Bare Die

GaN Inside PCB

GS66516T 60A, 25mΩ Top cooling

JPERY

SAINT

Embedded GaN pre-packaged die

45mm

Thermal pad surface 731mm²

> Copper thickness 250µm

- Good thermal resistance
- Very low inductance

GaN Inside PCB

GS-065-060-2-D 60A, 25mΩ

Embedded GaN bare die

Thermal pad surface XXmm²

> Copper thickness 250µm

- Very good thermal resistance
- Very low inductance

• Reliability of such packaging is one of the following subjects at IRT

Conclusions – EPowerDrive Project

- EPowerDrive project at IRT Saint Exupery proposes technologies, models and tools to increase power density and efficiency of the whole Power Drive System using WBG semiconductors (Silicium Carbide SiC and Gallium Nitride GaN).
- Reliability of Power Drive Systems using SiC and GaN can be improved by reducing overvoltages, switching speed, losses and thermal cycles amplitude. Some works at EPowerDrive aim on reducing these values.
- PWM methods improve some characteristics in three-phase converters such as losses and thermal cycle amplitudes.
 - Integrating capacitors inside SiC power module reduce overvoltage and losses.
 - GaN embedded inside PCB reduce thermal resistance as well as overvoltage. Reliability of such "packaging" is being studied by IRT.

Thank you for your attention

Bernardo Cougo bernardo.cogo@irt-saintexupery.com

© IRT AESE "Saint Exupéry" - All rights reserved Confidential and proprietary document. This document and all information contained herein is the sole property of IRT AESE "Saint Exupéry". No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of IRT AESE "Saint Exupéry". This document and its content shall not be used for any purpose other than that for which it is supplied. IRT AESE "Saint Exupéry" and its logo are registered trademarks.