

FITAGAN

Flabilité des TrAnsistors GaN de moyenne puissance pour applications automobiles

- Moncef KADI → IRSEEM EA 4353 ESIGELEC
- Pascal DHERBECOURT→ GPM UMR CNRS 6634 Université de Rouen Normandie

LES RENDEZ-VOUS FIABILITE DU CFF

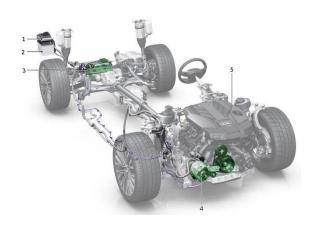
05/01/2021

Contexte global (1): Fiabilité de l'électronique embarquée dans les véhicules électriques

- > Le véhicule électrique :
 - Des objectifs communs:
 - ✓ Moins de CO2 et de gaz toxiques émis
 - Différentes déclinaisons:
 - ✓ Tout électrique (EV)
 - ✓ Hybride rechargeable sur réseau (PHEV)
 - ✓ Hybride complet (FHEV)
 - ✓ <u>Hybridation légère (MHEV)</u>
 - ✓ Start & Stop
- Compromis coût/réduction des émissions : MHEV
 - Coût: compatible réseau de bord 48V
 - Emissions: -7 à 12%

Mercedes-Benz

La technologie MHEV est proposée actuellement dans des modèles de véhicules par plusieurs constructeurs



Contexte global (2): En quoi consiste cette hybridation MHEV dite légère?

Source: Valeo Hybrid4All 48V MHEV system components

1.Powertrain Control Unit (PCU)

2.14V battery sensor

3.Belt Starter Generator (BSG) 8 - 12 kW / 55

Nm Peak, with integrated inverter

4.DC/DC converter, 60 V / 12 V, 2 kW

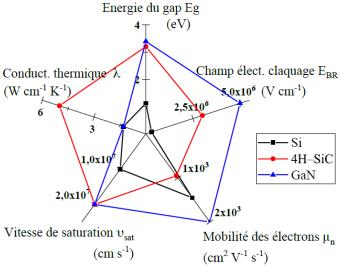
5.48V battery, 200 - 600 kJ

Source: Audi A8 48V MHEV

1.DC/DC converter
2.low voltage battery (12 V)
3.high voltage battery (48 V)
4.48V belt-drive starter-generator
5.3.0 TFSI internal combustion engine

Source: Continental 48V MHEV system components

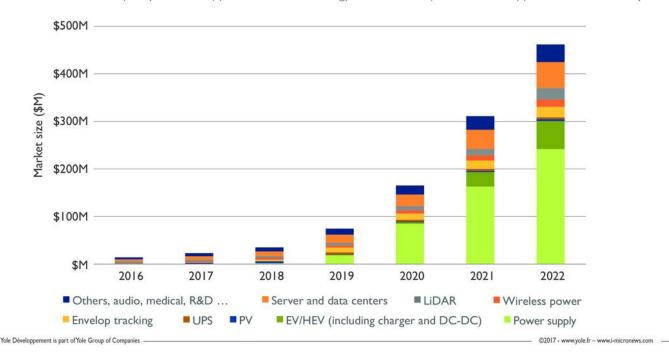
1.electric machine with integrated inverter 2.DC/DC converter (48 V / 12 V)



Contexte FITAGAN: Fiabilité des transistors de puissance en technologie GaN pour convertisseurs DC/DC

- ✓ Besoin de convertisseurs plus efficaces et moins encombrants
- ✓ Le silicium (Si) atteint ses limites de par ses propriétés physiques
- ✓ GaN et SiC : nouvelles technologies (température maximale d'opération accrue, faible résistance à l'état passant R_{DSON} , la tension de claquage et la vitesse de commutation accrues)
- ✓ La fréquence d'opération plus élevée permet de réduire la taille des composants passifs, en particulier les inductances

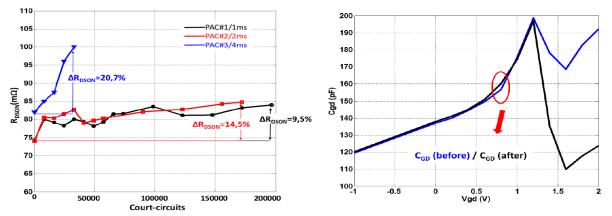
Source : Convertisseur de courant 12-48V DC/DC de Valeo



Contexte FITAGAN: Fiabilité des transistors de puissance en technologie GaN pour convertisseurs DC/DC

GaN power device market size split by application (\$M)

(Source: Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trends 2017 report, Yole Développement, October 2017)



OBJECTIFS FITAGAN

Etudier la fiabilité des transistors GaN moyenne tension (100V)

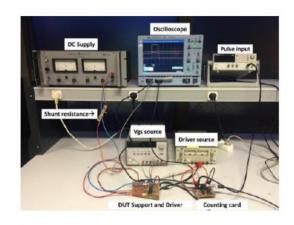
- Déterminer leur principaux mécanismes de défaillances
- o Identifier les indicateurs de défaillances
- Déterminer les seuils critiques des dégradations des paramètres électriques à partir desquels il y a défaillance

Jian-Zhi FU, « Mise en œuvre de moyens de vieillissement accéléré et d'analyses dédiés aux composants de puissance grand gap » Thèse de doctorat de l'université de Rouen Normandie, Décembre 2018.

Elaborer un système de surveillance des paramètres du convertisseur DC/DC in-situ

- Comment insérer des éléments de surveillance sans modifier les performances intrinsèques du convertisseur?
- Etudier la possibilité de contrôle de certains indicateurs pendant une phase d'arrêt (courant de fuite)?

Compétences techniques et bancs associés:


Caractérisation électrique (banc GPM)

Caractérisation physique (équipements du GPM)

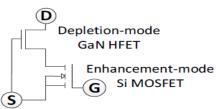
Caractérisation capacitive (banc IRSEEM)

Stress en CC (banc IRSEEM)

Technologie des transistors GaN

□ HEMT AlGaN/GaN : Création d'un canal de conduction 2 DEG à

l'interface AlGaN/GaN



Structure nativement Normally-ON

M. Avcu, "Caractérisation des effets parasites dans les HEMTs GaN : développement d'un banc de mesure 3ω ", thèse de doctorat, Université de Limoges, 2014.

□ Différentes technologies pour réaliser des GaN Normally-OFF:

en jouant sur le contact de grille

G
p-GaN
S AlGaN barrier
GaN channel
buffer
Si or SiC substrate

Principe du GaN cascode [*]

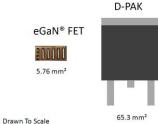
Structure du e HEMT GaN [**]

[*] E.Jones, D.Costinett; "Review of Commercial GaN Power Devices ans GaN-Based Design Challenges", 2014 IEEE Workshop on Wide-bandgap Power Devices and Applications (WiPDA), Knoxville, USA, October 2014.

[**] M.Meneghini & al; "Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate", Energies, Vol 10, February 2017.

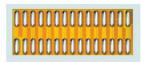
Différentes phases du projet : 18 mois

- 1. Étude bibliographique et choix du composant d'étude GaN de découpe
 - a) Offre commerciale, concertation avec les partenaires
- Caractérisation et vieillissement du DUT en mode CC
 - a) Expertise des équipes de l'IRSEEM et du GPM dans la caractérisation et les bancs de stress en CC de ce type de composant
 - b) Développement d'un banc de vieillissement, de bancs de caractérisations électriques
 - c) Analyse et recherche des modes de défaillance
- 3. Design du convertisseur DC/DC
 - a) Conception et réalisation d'un démonstrateur
- Design et simulation d'un convertisseur avec « Health Monitoring » pour convertisseur DC/DC
 - a) Poursuive la collaboration auprès d'industriels (Valéo)


Composant GaN retenu pour l'étude

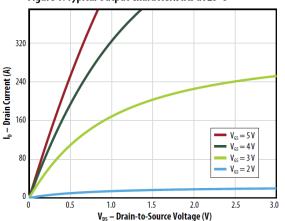
Paramètre (symbole)	Valeur (conditions)
Continuous Drain current (ID)	90 A (Tc=25 °C)
Gate-Source Voltage (VGS)	-4 V +6 V
Drain -Source Breakdown Voltage (V(BR)DSS)	80 V (Vgs=0 V, Id=100 uA)
Drain-Source On Resistance	$1.8 \text{ m}\Omega \text{ (VGS} = 5 \text{ V, ID} = 29 \text{ A)}$
Gate Threshold Voltage (VGS(TH))	1.2 V (VDS=VGS, ID=13 mA)

Avantages:



- Faible R_{DS(ON)}
- Tension compatible avec l'application recherchée
- Fort courant à l'état passant
- Boitier compact (faibles éléments parasites)

Inconvénients :


- Accès difficiles au composant (Grille, Drain et Source)
- Difficultés de contact reproductibles lors du report
- Structure physique interne complexe

EPC2206

Die Size: 6.05 mm x 2.3 mm

Figure 1: Typical Output Characteristics at 25°C

Demo Board

Front view

DESCRIPTION

The EPC90122 development board is a 80 V maximum device voltage, 40 A maximum output half bridge current, with onboard gate drives, featuring the **EPC2206** enhancement mode (eGaN) field effect transistor (FET).

80 V Half-bridge with Gate Drive, Using EPC2206

Paramètre (symbole)	Valeur
Gate Drive Input Supply (VDD)	7V à 12V
Bus Input Voltage (VIN)	64V
Output Current (Iout)	40A
PWM Logic Input Voltage	Input 'Low' : de 0 à 1.5V
(VPWM)	Input 'High': de 3.5 à 6V

LMG1205 80-V, 1.2-A to 5-A, Half Bridge GaN Driver

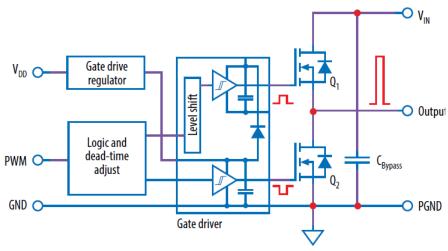
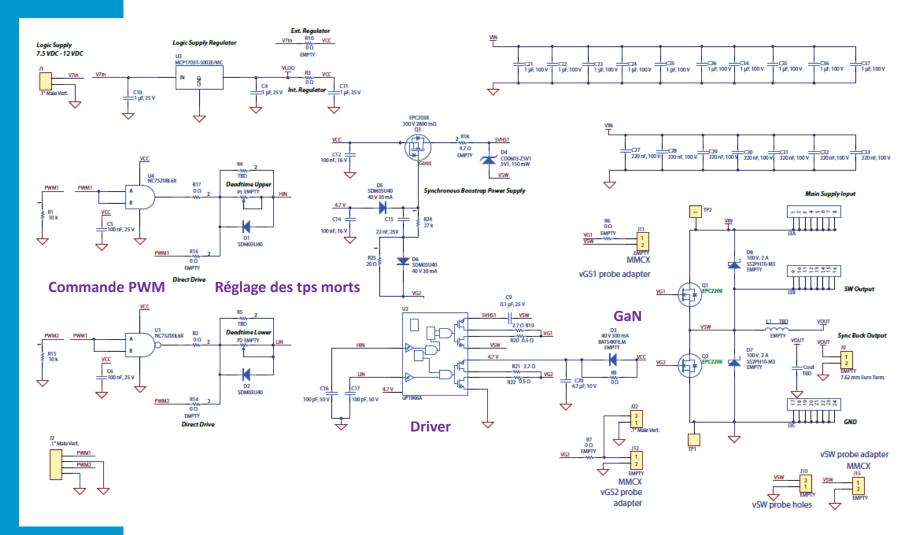
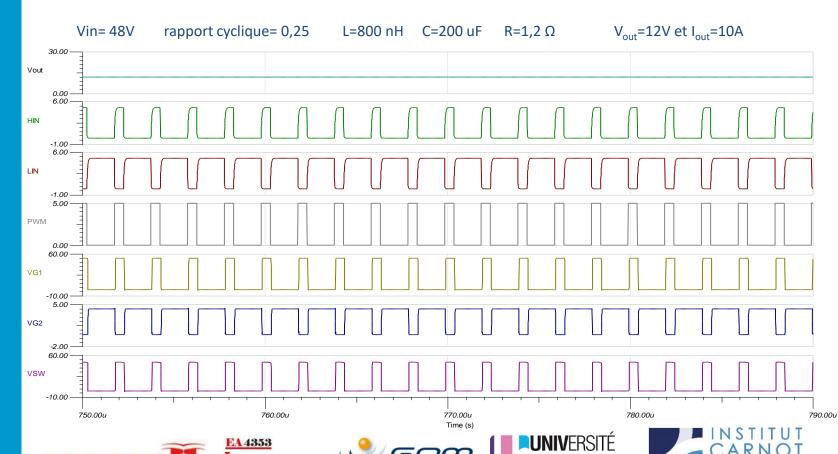


Figure 1: Block diagram of EPC90122 development board



Simulation SPICE du composant et d'un schéma de convertisseur (demo board)



Simulation SPICE du composant et d'un schéma de convertisseur (demo board)

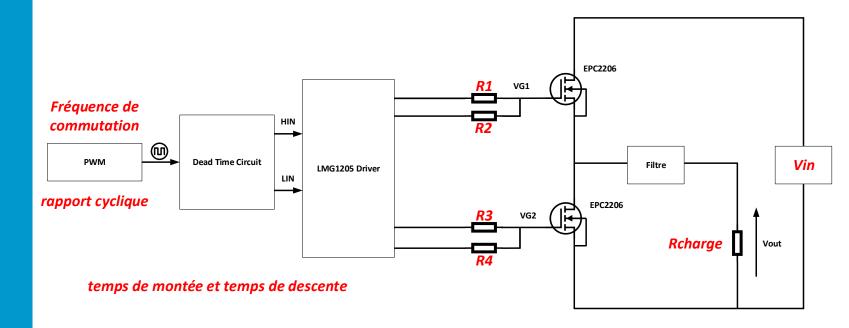
Simulation du schéma électrique du circuit EPC90122 sur TINA

Formes d'ondes d'entrée et de sortie du circuit EPC90122

Mesures préliminaires du convertisseur (demo board)

- Mesures du circuit EPC90122
 - ✓ Ajout d'un filtre en sortie avec possibilité de considérer plusieurs charges (courant entre 0,25A et 10A)
 - ✓ Deux potentiomètres pour régler le temps mort

- Paramètres influents sur la CEM
 - ✓ Plusieurs paramètres peuvent modifier la réponse spectrale (signature CEM du convertisseur)



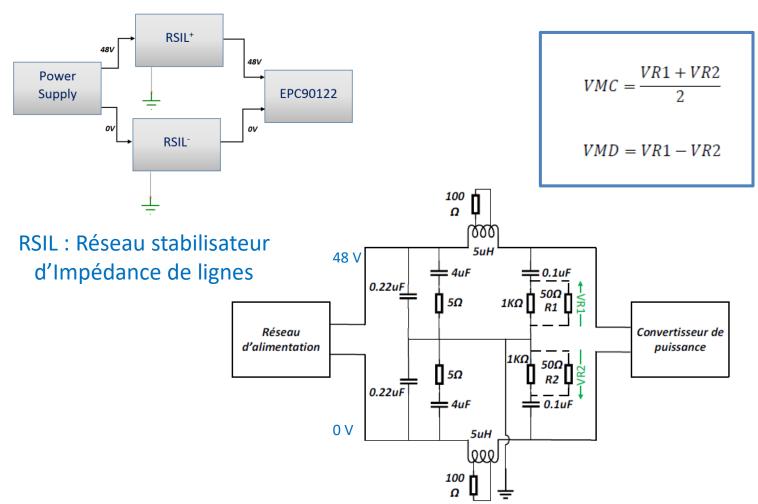
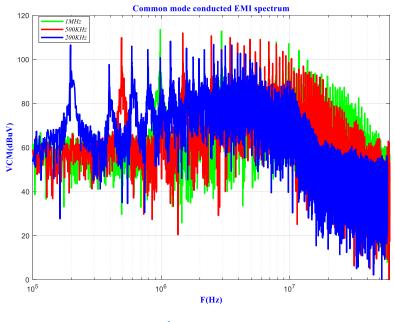
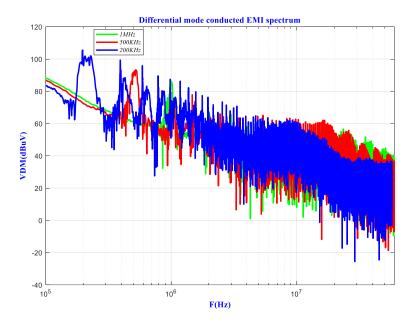


Schéma de principe d'une simulation CEM

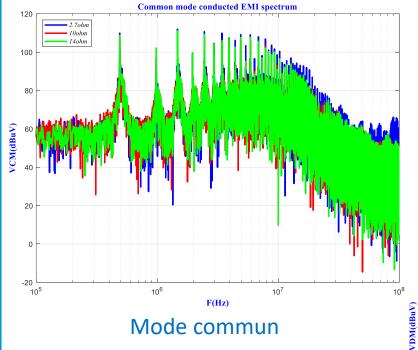


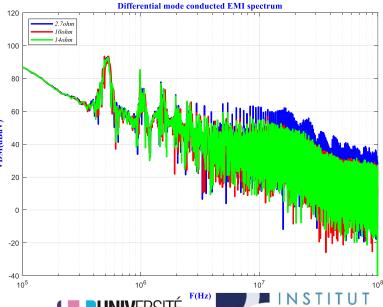


Effet de la montée des fréquences de commutation

Mode commun

Mode différentiel





 Effet de l'augmentation du produit RC à l'entrée des grilles des transistors

Mode différentiel

Etat d'avancement et perspectives

☐ Etat d'avancement:

- Réalisation d'un dispositif de report du composant pour les phases de caractérisations :
- Méthode simple avec une réalisation en interne
- Reproductibilité de la qualité de contact → Influence sur les mesures
- Réalisation d'une carte de stress en court-circuit avec contrôle du courant
- Premiers essais en cours
- Test de la demo board
- Problème de surtensions en sortie (overshoot)
- Conception et routage d'un convertisseur de démonstration

Perspectives

- Analyse des principaux indicateurs de défaillances
- Concevoir et réaliser un démonstrateur intégrant le contrôle des principaux indicateurs de défaillance in-situ
- Etablir un guide méthodologique à destination des industriels (sous réserve de respecter la confidentialité)

Etat d'avancement et perspectives

✓ Valorisation scientifique et en direction des industriels :

- Poursuivre la montée en compétence sur la fiabilité des GaN et accroitre le rayonnement des acteurs du projet et de l'Institut CARNOT-ESP
- Présentation de ces travaux dans des conférences spécialisées (ESREF 2021 et IRPS 2021) et publications dans des journaux spécialisés
- Consolider la collaboration initiée avec Valéo

Merci de votre attention Questions ?

