

NRTW 2025

National Reliability Technology Workshop

Mercredi 19 et Jeudi 20 mars 2025 | GANIL – Bd Henri Becquerel, 14000 Caen

Nouveau modèle de fatigue thermomécanique des assemblages électroniques sans plomb SAC305

Organisé par :

Sommaire

- Introduction
- Méthodologie
- Essais de cyclage thermique
- Caractérisation des matériaux
- Développement du modèle de fatigue
- Validation du modèle de fatigue
- **Conclusions**

• Les équipements électroniques soumis à des cycles thermiques peuvent subir des défaillances par un mécanisme de fatigue thermomécanique des joints brasés

→ Différentiel de CTE entre le PCB et le composant

• Les équipements électroniques soumis à des cycles thermiques peuvent subir des défaillances par un mécanisme de **fatigue thermomécanique** des joints brasés

→ Différentiel de CTE entre le PCB et le composant

 Les équipements électroniques soumis à des cycles thermiques peuvent subir des défaillances par un mécanisme de fatigue thermomécanique des joints brasés

→ Différentiel de CTE entre le PCB et le composant

• Les équipements électroniques soumis à des cycles thermiques peuvent subir des défaillances par un mécanisme de fatigue thermomécanique des joints brasés

→ Fissure totale de la brasure = défaillance de l'assemblage électronique

Les modèles de fatigue analytiques (type Engelmaier) pour l'alliage sans plomb

SAC305 ne prennent pas en compte :

 Le comportement viscoplastique des brasures

- La forme des joints de brasure
- L'effet de la matrice de billes pour les composants de type BGA

Besoin de modèles de fatigue analytiques plus précis

Méthodologie

\mathcal{N}

Essais de cyclage thermique

- 4 véhicules de test (x8)
 - o CLCCs: I/O 68, 44, 28, 20
 - o WLPs: I/O 900, 400
 - o Résistances: 2512, 2010, 1210
- 4 empilements de PCB :

Véhicule de test

(DS: Double-Sided / ML: Multi-Layer)

Essais de cyclage thermique

- 4 conditions de cyclage thermique :
 - o [-55°C; 125°C], 10°C.min⁻¹, 15 min aux paliers
 - o [-55°C; 125°C], 10°C.min⁻¹, 30 min aux paliers
 - o [-55°C; 125°C], 10°C.min⁻¹, 120 min aux paliers
 - o [-40°C; 85°C], 10°C.min⁻¹, 15 min aux paliers
 - o [-20°C; 65°C], 10°C.min⁻¹, 15 min aux paliers
- Critère de défaillance :
 - Augmentation de 20% de la résistance électrique initiale pour 5 scans consécutifs (IPC-9701A)
 - Post-traitement des résultats en durée de vie avec la loi de probabilité de Weibull à 2 paramètres

Cycles thermiques

Essais de cyclage thermique

- Exemple de résultats (WLP400)
 - o Influence de l'épaisseur du PCB
 - o Flexion de l'assemblage non-négligeable

Droites de Weibull (WLP400)

Méthodologie

Caractérisation (SAC305)

- Essais de traction et de relaxation de contraintes
 - Températures: -55°C, 20°C et 125°C
 - \circ de/dt = 4,8 x 10⁻⁵ s⁻¹
 - Contraintes de cisaillement obtenues avec le critère de von Misès
 - Comportement inélastique dépendant du temps
 (T_H = T/T_f > 0.4)

Relaxation de contraintes à -55°C, 20°C et 125°C et interpolations à -40°C, 0°C et 50°C

$$\tau_{max}(t,T) = [\tau_1(T) - \tau_{sat}(T)]e^{-\lambda_1(T)t} + [\tau_2(T) - \tau_{sat}(T)]e^{-\lambda_2(T)t} + \tau_{sat}(T)$$

Caractérisation (composants)

- Coefficient d'expansion thermique (CTE) et module d'Young (E)
 - Alumine Al₂O₃ (CLCCs et résistances)
 - Silicium Si (WLPs)

					I	1)			6	. 			,	
Composant	Matériau	E (GPa)	V	CTE (ppm.°C ⁻¹)		(ppm.°C ⁻¹		•	5 - 4 -	CTE _{Al2O3} = 2				4328
CLCC	Al ₂ 0 ₃	285	0.21	CTE _{Al2O3} (T)		TE _{AI2O3} (p			3 + 2 +					
Résistances	Al_2O_3	285	0.21	CTE _{Al2O3} (T)		5			1 +		1			
WLP	Si	130	0.28	2.6		-10	00	-50	0	50 Tempé ra	100 ature (°C)	150	200	2

L.R. Zawicki, B.W. Lenhardt, R.R. Smith, "Survivability of soldered Leadless Chip Carriers after temperature cycling", Joint American Ceramic Society (ACS) Electronics Division, 1994 X.J. Fan, B. Varia, Q. Han, "Design and optimization of thermo-mechanical reliability in wafer level packaging", Microelectronics Reliability, Vol.50, pp. 536-546, 2010 P. Vianco, M.K. Neilsen, "Thermal mechanical fatigue of a 56 I/O Plastic Quad-Flat Nolead (PQFN) package", SMTA International, 2015

250

Caractérisation (PCB)

- Modèle micromécanique des stratifies et préimprégnés
 - Matériaux : résine époxyde et tissus de verre
 - Elément de Volume Représentatif (EVR) → calcul du E(T) et du CTE(T)

Caractérisation (PCB)

Coefficient d'expansion thermique (CTE) et module d'Young (E)

ML8

Méthodologie

Δγ_c

Développement du modèle

Critère de fatigue : déformation inélastique en cisaillement (γ_c)

$$\gamma_c(t,T) = \frac{\Delta L_{max} - \left(\Delta L_{PCB/Composant} + \Delta L_{flexion}\right)}{h_i}$$

Δγς

Développement du modèle

- Prise en compte de la forme de la brasure
 - La plupart des modèles ne considèrent que la hauteur « h_b »
 - o La hauteur intégrée « h_i » prend en compte la forme de brasure

$$h_i = S_c \int_0^{h_b} \frac{1}{S(z)} dz$$

Δγς

Développement du modèle

Critère de fatigue : déformation inélastique en cisaillement (γ_c)

$$\gamma_c(t,T) = \frac{\Delta L_{max} - \left[\Delta L_{PCB/Composant} + \Delta L_{flexion}\right]}{h_i}$$

Δγς

Développement du modèle

Prise en compte de l'effet de la matrice de billes

Méthodologie

Développement du modèle

• Corrélation entre la plage de déformations inélastiques en cisaillement ($\Delta \gamma_c$) et le nombre de cycles à défaillance normalisé par la section critique ($N_{50\%}/S_c$)

- → +80 points expérimentaux
- → Très bon coefficient de corrélation R² = 0,9651
- → Plusieurs ordres de grandeur en durée de vie couverts

Validation du modèle

 Validation du modèle avec de nouveaux véhicules de test et de nouvelles conditions de cyclage thermique (+20 points expérimentaux)

Modèle type Engelmaier (cf. diapositive 7)

Nouveau modèle validé

Conclusions

- Les données d'entrée (propriétés matériaux du PCB, du composant et de la brasure) sont aussi importantes que le modèle de fatigue lui-même
- Le modèle de fatigue analytique développé permet de rendre compte des effets de 1^{er} ordre du comportement des brasures SAC305 lors de cycles thermiques
- Le modèle prend en compte le comportement viscoplastique des brasures, la flexion de l'assemblage, l'effet de matrice de billes et la forme des joints brasés
- Un logiciel intégrant le modèle de fatigue et les modules de calcul des propriétés matériaux associés est en cours de développement

NRTW 2025

National Reliability Technology Workshop

Mercredi 19 et Jeudi 20 mars 2025 | GANIL – Bd Henri Becquerel, 14000 Caen

Merci pour votre écoute!

Organisé par :

